720 research outputs found

    Mean curvature flow in a Ricci flow background

    Full text link
    Following work of Ecker, we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.Comment: final versio

    OpenSPIM - an open access platform for light sheet microscopy

    Full text link
    Light sheet microscopy promises to revolutionize developmental biology by enabling live in toto imaging of entire embryos with minimal phototoxicity. We present detailed instructions for building a compact and customizable Selective Plane Illumination Microscopy (SPIM) system. The integrated OpenSPIM hardware and software platform is shared with the scientific community through a public website, thereby making light sheet microscopy accessible for widespread use and optimization to various applications.Comment: 7 pages, 3 figures, 6 supplementary videos, submitted to Nature Methods, associated public website http://openspim.or

    Multi linear formulation of differential geometry and matrix regularizations

    Get PDF
    We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of multi linear algebraic structures on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's formula, the Ricci curvature and the Codazzi-Mainardi equations. For matrix analogues of embedded surfaces we define discrete curvatures and Euler characteristics, and a non-commutative Gauss--Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices representing the embedding coordinates, and a large class of explicit examples is provided. Furthermore, we illustrate the fact that techniques from differential geometry can carry over to matrix analogues by proving that a bound on the discrete Gauss curvature implies a bound on the eigenvalues of the discrete Laplace operator

    Discrete curvature and the Gauss-Bonnet theorem

    Get PDF
    For matrix analogues of embedded surfaces we define discrete curvatures and Euler characteristics, and a non-commutative Gauss--Bonnet theorem is shown to follow. We derive simple expressions for the discrete Gauss curvature in terms of matrices representing the embedding coordinates, and provide a large class of explicit examples illustrating the new notions

    Mean Curvature Flow of Spacelike Graphs

    Full text link
    We prove the mean curvature flow of a spacelike graph in (Σ1×Σ2,g1g2)(\Sigma_1\times \Sigma_2, g_1-g_2) of a map f:Σ1Σ2f:\Sigma_1\to \Sigma_2 from a closed Riemannian manifold (Σ1,g1)(\Sigma_1,g_1) with Ricci1>0Ricci_1> 0 to a complete Riemannian manifold (Σ2,g2)(\Sigma_2,g_2) with bounded curvature tensor and derivatives, and with sectional curvatures satisfying K2K1K_2\leq K_1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2K1K_2\leq K_1, that if K1>0K_1>0, or if Ricci1>0Ricci_1>0 and K2cK_2\leq -c, c>0c>0 constant, any map f:Σ1Σ2f:\Sigma_1\to \Sigma_2 is trivially homotopic provided fg2<ρg1f^*g_2<\rho g_1 where ρ=minΣ1K1/supΣ2K2+0\rho=\min_{\Sigma_1}K_1/\sup_{\Sigma_2}K_2^+\geq 0, in case K1>0K_1>0, and ρ=+\rho=+\infty in case K20K_2\leq 0. This largely extends some known results for KiK_i constant and Σ2\Sigma_2 compact, obtained using the Riemannian structure of Σ1×Σ2\Sigma_1\times \Sigma_2, and also shows how regularity theory on the mean curvature flow is simpler and more natural in pseudo-Riemannian setting then in the Riemannian one.Comment: version 5: Math.Z (online first 30 July 2010). version 4: 30 pages: we replace the condition K10K_1\geq 0 by the the weaker one Ricci10Ricci_1\geq 0. The proofs are essentially the same. We change the title to a shorter one. We add an applicatio

    Zero area singularities in general relativity and inverse mean curvature flow

    Full text link
    First we restate the definition of a Zero Area Singularity, recently introduced by H. Bray. We then consider several definitions of mass for these singularities. We use the Inverse Mean Curvature Flow to prove some new results about the mass of a singularity, the ADM mass of the manifold, and the capacity of the singularity.Comment: 13 page

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana

    Local existence of dynamical and trapping horizons

    Full text link
    Given a spacelike foliation of a spacetime and a marginally outer trapped surface S on some initial leaf, we prove that under a suitable stability condition S is contained in a ``horizon'', i.e. a smooth 3-surface foliated by marginally outer trapped slices which lie in the leaves of the given foliation. We also show that under rather weak energy conditions this horizon must be either achronal or spacelike everywhere. Furthermore, we discuss the relation between ``bounding'' and ``stability'' properties of marginally outer trapped surfaces.Comment: 4 pages, 1 figure, minor change

    A Remark on Boundary Effects in Static Vacuum Initial Data sets

    Full text link
    Let (M, g) be an asymptotically flat static vacuum initial data set with non-empty compact boundary. We prove that (M, g) is isometric to a spacelike slice of a Schwarzschild spacetime under the mere assumption that the boundary of (M, g) has zero mean curvature, hence generalizing a classic result of Bunting and Masood-ul-Alam. In the case that the boundary has constant positive mean curvature and satisfies a stability condition, we derive an upper bound of the ADM mass of (M, g) in terms of the area and mean curvature of the boundary. Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit

    Levi umbilical surfaces in complex space

    Full text link
    We define a complex connection on a real hypersurface of \C^{n+1} which is naturally inherited from the ambient space. Using a system of Codazzi-type equations, we classify connected real hypersurfaces in \C^{n+1}, n2n\ge 2, which are Levi umbilical and have non zero constant Levi curvature. It turns out that such surfaces are contained either in a sphere or in the boundary of a complex tube domain with spherical section.Comment: 18 page
    corecore